Dorylus - Affordable, Scalable, and Accurate GNN Training with Distributed CPU Servers and Serverless Threads
Offered By: USENIX via YouTube
Course Description
Overview
Syllabus
Intro
Machine Learning
Graph Neural Networks
Stages of a Graph Neural Network
GPUs Are Not a Good Fit for Graph Operations
Combining CPUs and GPUs is Cost-Ineffective
Using Many CPU Servers Can Still Be Expensive
Key Insight: Serverless Fits Our Goals
Serverless Achieves Low-Cost, Scalable Efficiency
Challenges with Using Serverless
Challenge 1: Limited Resources
Solution: Computation Separation
Dorylus Architecture
Flow of Decomposed Tasks
Challenge 2: Limited Network
Solution: Create Pipeline of Decomposed Tasks
Data Chunks Moving Through Layer of Pipeline
Synchronize after Scatter Hinders Pipeline
Two Sync Points Makes Asynchrony Difficult
Minimizing Effects of Asynchrony on Convergence
Serverless Optimizations
Data Graphs
We Evaluated Several Aspects of Dorylus
High Value on Large-Sparse Graphs
Dorylus Outperforms Existing Systems
Dorylus Scales Full Graph Training
Conclusion: Dorylus Provides Value
Taught by
USENIX
Related Courses
Cloud Computing Concepts, Part 1University of Illinois at Urbana-Champaign via Coursera Cloud Computing Concepts: Part 2
University of Illinois at Urbana-Champaign via Coursera Reliable Distributed Algorithms - Part 1
KTH Royal Institute of Technology via edX Introduction to Apache Spark and AWS
University of London International Programmes via Coursera Réalisez des calculs distribués sur des données massives
CentraleSupélec via OpenClassrooms