YoVDO

A Tensor Compiler Approach for One-size-fits-all ML Prediction Serving

Offered By: USENIX via YouTube

Tags

OSDI (Operating Systems Design and Implementation) Courses Machine Learning Courses

Course Description

Overview

Explore a groundbreaking approach to machine learning model scoring in this 20-minute conference talk from OSDI '20. Discover Hummingbird, an innovative tensor compiler method that simplifies and optimizes ML prediction serving for enterprise applications. Learn how this technique compiles featurization operators and traditional ML models into a compact set of tensor operations, reducing infrastructure complexity and leveraging existing Neural Network compilers and runtimes. Examine the performance benefits of Hummingbird, which competes with and often surpasses hand-crafted kernels on both CPU and GPU micro-benchmarks while enabling seamless end-to-end acceleration of ML pipelines. Gain insights into how this open-source solution addresses the challenges of ML adoption in enterprise environments by streamlining the model scoring process and enhancing efficiency across various hardware platforms.

Syllabus

OSDI '20 - A Tensor Compiler Approach for One-size-fits-all ML Prediction Serving


Taught by

USENIX

Related Courses

GraphX - Graph Processing in a Distributed Dataflow Framework
USENIX via YouTube
Theseus - An Experiment in Operating System Structure and State Management
USENIX via YouTube
RedLeaf - Isolation and Communication in a Safe Operating System
USENIX via YouTube
Microsecond Consensus for Microsecond Applications
USENIX via YouTube
KungFu - Making Training in Distributed Machine Learning Adaptive
USENIX via YouTube