YoVDO

A Tensor Compiler Approach for One-size-fits-all ML Prediction Serving

Offered By: USENIX via YouTube

Tags

OSDI (Operating Systems Design and Implementation) Courses Machine Learning Courses

Course Description

Overview

Explore a groundbreaking approach to machine learning model scoring in this 20-minute conference talk from OSDI '20. Discover Hummingbird, an innovative tensor compiler method that simplifies and optimizes ML prediction serving for enterprise applications. Learn how this technique compiles featurization operators and traditional ML models into a compact set of tensor operations, reducing infrastructure complexity and leveraging existing Neural Network compilers and runtimes. Examine the performance benefits of Hummingbird, which competes with and often surpasses hand-crafted kernels on both CPU and GPU micro-benchmarks while enabling seamless end-to-end acceleration of ML pipelines. Gain insights into how this open-source solution addresses the challenges of ML adoption in enterprise environments by streamlining the model scoring process and enhancing efficiency across various hardware platforms.

Syllabus

OSDI '20 - A Tensor Compiler Approach for One-size-fits-all ML Prediction Serving


Taught by

USENIX

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent