Scaling Distributed Machine Learning with the Parameter Server
Offered By: USENIX via YouTube
Course Description
Overview
Explore a conference talk from OSDI '14 that introduces a parameter server framework for distributed machine learning. Learn about the framework's ability to manage asynchronous data communication between nodes, support flexible consistency models, elastic scalability, and continuous fault tolerance. Discover how this approach distributes both data and workloads over worker nodes while maintaining globally shared parameters on server nodes. Examine experimental results demonstrating the framework's scalability on petabytes of real data with billions of examples and parameters, covering problems from Sparse Logistic Regression to Latent Dirichlet Allocation and Distributed Sketching.
Syllabus
OSDI '14 - Scaling Distributed Machine Learning with the Parameter Server
Taught by
USENIX
Related Courses
Scalable Data ScienceIndian Institute of Technology, Kharagpur via Swayam Data Science and Engineering with Spark
Berkeley University of California via edX Data Science on Google Cloud: Machine Learning
Google via Qwiklabs Modern Distributed Systems
Delft University of Technology via edX KungFu - Making Training in Distributed Machine Learning Adaptive
USENIX via YouTube