Optimization of the Sherrington-Kirkpatrick Hamiltonian
Offered By: IEEE via YouTube
Course Description
Overview
Explore the optimization of the Sherrington-Kirkpatrick Hamiltonian in this 23-minute IEEE conference talk by Andrea Montanari. Delve into key concepts such as the Stochastic Block Model, Adjacency Matrix, and the Sherrington-Kirkpatrick Model and Theorem. Examine random graphs, formulas, and assumptions while gaining insights into the geometric interpretation of the problem. Learn about algorithm structures, including two crucial insights on orthogonality and optimization techniques, to enhance your understanding of this complex topic in statistical physics and machine learning.
Syllabus
Introduction
Stochastic Block Model
Adjacency Matrix
SherringtonKirkpatrick Model
SherringtonKirkpatrick
Theorem
Random Graphs
Formula
Assumption
Geometric Interpretation
Algorithm
Algorithms
Algorithm structure
Two insights
Orthogonality
Optimization
Taught by
IEEE FOCS: Foundations of Computer Science
Tags
Related Courses
Automata TheoryStanford University via edX Intro to Theoretical Computer Science
Udacity Computing: Art, Magic, Science
ETH Zurich via edX 理论计算机科学基础 | Introduction to Theoretical Computer Science
Peking University via edX Quantitative Formal Modeling and Worst-Case Performance Analysis
EIT Digital via Coursera