YoVDO

Optimization of the Sherrington-Kirkpatrick Hamiltonian

Offered By: IEEE via YouTube

Tags

IEEE FOCS: Foundations of Computer Science Courses Theoretical Computer Science Courses Random Graphs Courses Optimization Algorithms Courses

Course Description

Overview

Explore the optimization of the Sherrington-Kirkpatrick Hamiltonian in this 23-minute IEEE conference talk by Andrea Montanari. Delve into key concepts such as the Stochastic Block Model, Adjacency Matrix, and the Sherrington-Kirkpatrick Model and Theorem. Examine random graphs, formulas, and assumptions while gaining insights into the geometric interpretation of the problem. Learn about algorithm structures, including two crucial insights on orthogonality and optimization techniques, to enhance your understanding of this complex topic in statistical physics and machine learning.

Syllabus

Introduction
Stochastic Block Model
Adjacency Matrix
SherringtonKirkpatrick Model
SherringtonKirkpatrick
Theorem
Random Graphs
Formula
Assumption
Geometric Interpretation
Algorithm
Algorithms
Algorithm structure
Two insights
Orthogonality
Optimization


Taught by

IEEE FOCS: Foundations of Computer Science

Tags

Related Courses

An Improved Exponential-Time Approximation Algorithm for Fully-Alternating Games Against Nature
IEEE via YouTube
Computation in the Brain Tutorial - Part 2
IEEE via YouTube
Computation in the Brain - Part 1
IEEE via YouTube
Spectral Independence in High-Dimensional Expanders and Applications to the Hardcore Model
IEEE via YouTube
Cookbook Lower Bounds for Statistical Inference in Distributed and Constrained Settings - Part 1
IEEE via YouTube