Optimization Landscape and Two-Layer Neural Networks - Rong Ge
Offered By: Institute for Advanced Study via YouTube
Course Description
Overview
Explore the optimization landscape of two-layer neural networks in this 58-minute seminar on theoretical machine learning presented by Rong Ge from Duke University. Delve into topics such as non-convexity, saddle points, and local-optimizable functions. Examine results for symmetric distributions and gain insights into optimization landscapes with symmetric input distributions. Learn about high-level ideas and interpolation techniques as applied to two-layer neural networks. This comprehensive talk, delivered at the Institute for Advanced Study, offers a deep dive into the mathematical foundations of neural network optimization.
Syllabus
Introduction
Non convexity
Saddle points
Localoptimizable functions
Results
Symmetric Distribution
Optimization Landscape
symmetric input distribution
TwoLayer Neural Network
HighLevel Idea
First Attempt
Interpolate
Summary
Taught by
Institute for Advanced Study
Related Courses
Latent State Recovery in Reinforcement Learning - John LangfordInstitute for Advanced Study via YouTube On the Critic Function of Implicit Generative Models - Arthur Gretton
Institute for Advanced Study via YouTube Priors for Semantic Variables - Yoshua Bengio
Institute for Advanced Study via YouTube Instance-Hiding Schemes for Private Distributed Learning
Institute for Advanced Study via YouTube Learning Probability Distributions - What Can, What Can't Be Done - Shai Ben-David
Institute for Advanced Study via YouTube