YoVDO

Optimal Quantile Estimation for Streams

Offered By: Simons Institute via YouTube

Tags

Sublinear Algorithms Courses Randomized Algorithms Courses Space Complexity Courses Approximation Algorithms Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 38-minute lecture on optimal quantile estimation for data streams presented by Mihir Singhal from UC Berkeley at the Simons Institute. Delve into the fundamental problem of data sketching, focusing on estimating quantiles in a stream of elements. Learn about previous algorithms, including comparison-based methods and their space complexity. Discover a new deterministic quantile sketch that achieves optimal memory usage of O(1/ε) words, improving upon existing algorithms. Understand the significance of this advancement in approximating stream statistics like median or percentiles with minimal space requirements. Gain insights into the collaborative work with Meghal Gupta and Hongxun Wu, which contributes to the field of extroverted sublinear algorithms.

Syllabus

Optimal Quantile Estimation for Streams


Taught by

Simons Institute

Related Courses

Sampling-Based Sublinear Low-Rank Matrix Arithmetic Framework for Dequantizing Quantum Machine Learning
Association for Computing Machinery (ACM) via YouTube
Sublinear Algorithms for Gap Edit Distance
IEEE via YouTube
High Dimensional Robust Sparse Regression
Simons Institute via YouTube
Learning-Augmented Sketches for Frequency Estimation
Simons Institute via YouTube
Adaptive Sparse Recovery with Limited Adaptivity
Simons Institute via YouTube