YoVDO

Optimal Iterative Algorithms for Problems With Random Data

Offered By: Simons Institute via YouTube

Tags

Algorithm Design Courses Computational Complexity Courses Statistical Inference Courses Computational Statistics Courses

Course Description

Overview

Explore a thought-provoking lecture on optimal iterative algorithms for problems with random data, presented by Andrea Montanari from Stanford University. Delve into the intricacies of computational complexity in statistical inference as part of the Computational Complexity of Statistical Inference Boot Camp. Gain valuable insights into the development and application of efficient algorithms for solving problems involving random data sets. Discover how these algorithms can be optimized for improved performance and accuracy in various statistical inference tasks.

Syllabus

Optimal Iterative Algorithms for Problems With Random Data


Taught by

Simons Institute

Related Courses

Natural Language Processing
Columbia University via Coursera
Intro to Algorithms
Udacity
Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera
Paradigms of Computer Programming
Université catholique de Louvain via edX
Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX