Optimal Iterative Algorithms for Problems With Random Data
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a thought-provoking lecture on optimal iterative algorithms for problems with random data, presented by Andrea Montanari from Stanford University. Delve into the intricacies of computational complexity in statistical inference as part of the Computational Complexity of Statistical Inference Boot Camp. Gain valuable insights into the development and application of efficient algorithms for solving problems involving random data sets. Discover how these algorithms can be optimized for improved performance and accuracy in various statistical inference tasks.
Syllabus
Optimal Iterative Algorithms for Problems With Random Data
Taught by
Simons Institute
Related Courses
Statistics in MedicineStanford University via Stanford OpenEdx Introduction to Statistics: Inference
University of California, Berkeley via edX Probability - The Science of Uncertainty and Data
Massachusetts Institute of Technology via edX Statistical Inference
Johns Hopkins University via Coursera Explore Statistics with R
Karolinska Institutet via edX