YoVDO

Online Learning in Markov Decision Processes - Part 1

Offered By: Simons Institute via YouTube

Tags

Reinforcement Learning Courses Markov Decision Processes Courses Online Learning Courses Dynamic programming Courses Bellman Equations Courses

Course Description

Overview

Explore the fundamentals of online learning in Markov Decision Processes (MDPs) through this comprehensive lecture by Ambuj Tewari from the University of Michigan. Delve into key concepts such as online learning theory, E-Cube, R-Max, and the general U principle. Gain insights into algorithm design, notation, and MDPs. Understand optimal MDPs, Bellman equations, and Bellman's theorem. Analyze the optimal approach to online learning in MDPs. This talk, part of the Theory of Reinforcement Learning Boot Camp at the Simons Institute, provides a thorough introduction to the subject and addresses important questions in the field.

Syllabus

Introduction
Online Learning
Theory
ECube
RMax
General of U principle
Algorithm Design
Notation
MDPs
Optimal MDP
Questions
Bellman Equation
Bellman Theorem
Analysis
Optimal


Taught by

Simons Institute

Related Courses

E-learning and Digital Cultures
University of Edinburgh via Coursera
Construcción de un Curso Virtual en la Plataforma Moodle
Universidad de San Martín de Porres via Miríadax
Teaching Computing: Part 2
University of East Anglia via FutureLearn
Learning Design
University of Leicester via EMMA
Nuevos escenarios de aprendizaje digital
University of the Basque Country via Miríadax