YoVDO

On the Hasse Principle for Reductive Algebraic Groups Over Finitely Generated

Offered By: International Centre for Theoretical Sciences via YouTube

Tags

Algebraic Number Theory Courses Combinatorics Courses Differential Geometry Courses Algebraic Geometry Courses Zariski-dense subgroups Courses Analytic Number Theory Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive lecture on the Hasse Principle for reductive algebraic groups over finitely generated fields, delivered by Igor Rapinchuk at the International Centre for Theoretical Sciences. Delve into advanced topics in algebraic number theory and group theory as part of the "Zariski Dense Subgroups, Number Theory and Geometric Applications" program. Gain insights into recent developments in the theory of arithmetic and Zariski-dense subgroups, their applications to various areas of mathematics, and open problems in the field. Examine the intersection of algebraic geometry, differential geometry, and number theory through this in-depth presentation, which contributes to the broader program's goal of surveying progress in the field over the past decade.

Syllabus

On the Hasse Principle for Reductive Algebraic groups over Finitely Generated ... by Igor Rapinchuk


Taught by

International Centre for Theoretical Sciences

Related Courses

Pseudo-Reductive Groups by Brian Conrad
International Centre for Theoretical Sciences via YouTube
Uniform Stability of Higher-rank Lattices - Lecture 2
International Centre for Theoretical Sciences via YouTube
Introduction to Bruhat-Tits Theory - Lecture 1
International Centre for Theoretical Sciences via YouTube
Bounded Generation of Linear Groups and Diophantine Approximation - Lecture 1
International Centre for Theoretical Sciences via YouTube
Arithmetic Groups of Higher Real Rank Are Not Left-orderable
International Centre for Theoretical Sciences via YouTube