On (1 + ε)-Approximate (Vertex) Cut Sparsifiers
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a lecture on approximate cut sparsifiers in graph theory. Delve into the construction of high-quality cut sparsifiers for planar and quasi-bipartite graphs. Learn about new results showing planar graphs admit planar quality-(1+ε) cut sparsifiers of size Õ(k/poly(ε)), contrasting with the 2^Ω(k) lower bound for quality-1 cases. Discover how quasi-bipartite graphs allow quality-1 cut sparsifiers of size k^O(k^2), improving on general graph bounds. Examine the limitations of contraction-based approaches for constructing optimal cut sparsifiers, particularly for quasi-bipartite graphs. Gain insights into graph compression techniques and their applications in sublinear graph simplification.
Syllabus
On (1 + ε)-Approximate (Vertex) Cut Sparsifiers
Taught by
Simons Institute
Related Courses
Aplicaciones de la teoría de grafos a la vida realMiríadax Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X] Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX Genome Sequencing (Bioinformatics II)
University of California, San Diego via Coursera Algorithmic Information Dynamics: From Networks to Cells
Santa Fe Institute via Complexity Explorer