YoVDO

Numerical Studies of Strongly Correlated Systems - Beating the Exponential Growth in Computation Time

Offered By: APS Physics via YouTube

Tags

Computational Physics Courses Numerical Methods Courses Condensed Matter Physics Courses Quantum Chemistry Courses Entanglement Entropy Courses Quantum Many-body Systems Courses Strongly Correlated Systems Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore numerical approaches to studying strongly correlated systems in this 39-minute conference talk presented by Steven White from UC Irvine at the APS March Meeting 2014 Fred Kavli Special Symposium. Delve into topics such as exact diagonalization, quantum Monte Carlo, the sign problem, and classification schemes. Examine the concept of entanglement entropy and its monogamy, as well as matrix product states. Discover results for 2D systems and the TJ model, and gain insights into the current state of research in this field. The presentation also covers dynamical properties, the quantum chemistry niche, and further discussion on the sign problem, providing a comprehensive overview of numerical studies in strongly correlated systems.

Syllabus

Introduction
Numerical approaches
Exact diagonalization
Quantum Monte Carlo
Sign problem
Classification schemes
Entanglement entropy
Monogamy of entanglement
Low entanglement
Matrix product states
Results for 2D systems
Results for TJ model
Where do we stand
Summary
Questions
Dynamical properties
Quantum chemistry niche
The sign problem


Taught by

APS Physics

Related Courses

Topology in Condensed Matter: Tying Quantum Knots
Delft University of Technology via edX
Atomic and Optical Physics Iā€“ Part 3: Atom-Light Interactions 1 -- Matrix elements and quantized field
Massachusetts Institute of Technology via edX
Atomic and Optical Physics I ā€“ Part 5: Coherence
Massachusetts Institute of Technology via edX
Atomic and Optical Physics: Quantum States and Dynamics of Photons
Massachusetts Institute of Technology via edX
Atomic and Optical Physics: Atom-photon interactions
Massachusetts Institute of Technology via edX