Numerical Relativity: Mathematical Formulation - Lecture 2
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Delve into the second lecture of the Numerical Relativity course, focusing on its mathematical formulation. Explore the complex field equations of General Relativity and their application in modeling high-energy astrophysical phenomena. Learn how these equations are solved in conjunction with magnetohydrodynamics using supercomputers to accurately simulate mergers of black holes and neutron stars, massive star collapses, and accreting black holes. Gain insights into the essential role of Numerical Relativity in interpreting gravitational-wave signals and multi-messenger observations from coalescing binaries. Understand the significance of these simulations for upcoming gravitational-wave, electromagnetic, and neutrino observatories. This lecture, part of a comprehensive two-week summer school on Gravitational-Wave Astronomy, provides graduate-level instruction from expert Thomas Baumgarte of Bowdoin College.
Syllabus
Numerical Relativity: Mathematical Formulation (Lecture 2) by Thomas Baumgarte
Taught by
International Centre for Theoretical Sciences
Related Courses
Numerical Relativity as a Tool for Studying the Early UniverseUniversity of Houston-Clear Lake via YouTube Gravitational Waves - A New Era of Astronomy Begins
World Science Festival via YouTube Numerical Relativity for Next-Generation Gravitational-Wave Observatories - Geoffrey Lovelace
Kavli Institute for Theoretical Physics via YouTube Post Processing and Mock Observations - Shane Davis, Philipp Moesta
Kavli Institute for Theoretical Physics via YouTube Numerical Relativity - Mathematical Formulation by Harald Pfeiffer
International Centre for Theoretical Sciences via YouTube