Non Linear Programming
Offered By: NIOS via YouTube
Course Description
Overview
Explore advanced optimization techniques in this comprehensive course on non-linear programming. Delve into convex sets and functions, examining their properties across multiple sessions. Master convex programming problems and Karush-Kuhn-Tucker (KKT) optimality conditions. Gain expertise in quadratic and separable programming, followed by an in-depth study of geometric programming over three sessions. Dive into dynamic programming, including its application in finding the shortest path in networks. Learn various search techniques and explore Fourier Series. Conclude with numerical integration methods, focusing on Simpson's Rule.
Syllabus
Convex sets and Functions.
Properties of Convex functions - I.
Properties of Convex functions - II.
Properties of Convex functions - III.
Convex Programming Problems.
KKT Optimality conditions.
Quadratic Programming Problems - I.
Quadratic Programming Problems - II.
Separable Programming - I.
Separable Programming - II.
Geometric programming I.
Geometric programming II.
Geometric programming III.
Dynamic programming I.
Dynamic programming II.
Dynamic programming approach to find shortest path in any network (Dynamic Programming III).
Dynamic programming IV.
Search Techniques - I.
Search Techniques - II.
Fourier Series.
Numerical Integration - II (Simpson's Rule).
Taught by
Ch 30 NIOS: Gyanamrit
Related Courses
Introduction to LogicStanford University via Coursera Networked Life
University of Pennsylvania via Coursera Introduction to Mathematical Thinking
Stanford University via Coursera Computational Photography
Georgia Institute of Technology via Coursera Initiation à la théorie des distributions
École Polytechnique via Coursera