YoVDO

Coresets for Robust Submodular Maximization with Deletions

Offered By: Finnish Center for Artificial Intelligence FCAI via YouTube

Tags

Data Science Courses Time Series Analysis Courses Approximation Algorithms Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore submodular maximization with deletions in this 39-minute conference talk by Nikolaj Tatti from the Finnish Center for Artificial Intelligence FCAI. Delve into robust submodular optimization methods addressing unexpected deletions due to privacy issues or user preferences. Learn about a single-pass streaming algorithm yielding approximation guarantees under p-matroid constraints and an offline algorithm with stronger approximation ratios. Discover the minimum number of items an algorithm must remember to achieve non-trivial approximation against adversarial deletion. Examine topics including optimization problems, submodularity, constraints, computational complexity, and experimental results. Gain insights from Tatti, an assistant professor at the University of Helsinki with extensive experience in data mining, statistical modeling, and optimization algorithms.

Syllabus

Intro
Example
Optimization problem
Submodularity
Constraints
Adversary
Computational complexity
Algorithms
RExc, robust streaming algorithm
Guarantees
Offline algorithm
Experiments
Running time


Taught by

Finnish Center for Artificial Intelligence FCAI

Related Courses

Data Analysis
Johns Hopkins University via Coursera
Computing for Data Analysis
Johns Hopkins University via Coursera
Scientific Computing
University of Washington via Coursera
Introduction to Data Science
University of Washington via Coursera
Web Intelligence and Big Data
Indian Institute of Technology Delhi via Coursera