Dynamical Approximations of Postsingularly Finite Entire Maps
Offered By: Simons Semester on Dynamics via YouTube
Course Description
Overview
Explore the dynamics of entire maps of finite type in this lecture from the Simons Semester on Dynamics. Delve into the concept of postsingularly finite maps and their significance in understanding global dynamics. Learn about a groundbreaking study that demonstrates how postsingularly finite maps can be approximated by a sequence of postsingularly finite polynomials, preserving key dynamical properties. Discover the connections between these approximations, their combinatorics, and maps acting on Teichmuller spaces. Gain insights into how this research contributes to the broader understanding of complex dynamics and the behavior of maps with finitely many singular values.
Syllabus
Nikolai Prochorov (Aix-Marseille Universite)
Taught by
Simons Semester on Dynamics
Related Courses
Analytic Combinatorics, Part IPrinceton University via Coursera Analytic Combinatorics, Part II
Princeton University via Coursera Analytic Combinatorics
Princeton University via Coursera Principles of Computing (Part 1)
Rice University via Coursera Combinatorics and Probability
Moscow Institute of Physics and Technology via Coursera