Next-Generation Data Science Workflows Using Ray
Offered By: CNCF [Cloud Native Computing Foundation] via YouTube
Course Description
Overview
Explore the potential of distributed and cloud-native data science workflows using Ray on Kubernetes in this informative conference talk. Discover how Ray, an open-source parallel computing platform, combines the scale-out cluster model of tools like Spark and Flink with a lightweight, scale-to-zero serverless style workflow designed for modern container platforms in the Kubernetes ecosystem. Learn about Ray's comprehensive toolkit supporting various data science and DevOps activities, including ETL, feature extraction, model training, ML pipelines, and serverless inferencing. Gain insights into deploying Ray on Kubernetes and integrating it with JupyterHub to create powerful distributed workflows. Watch a demonstration of Ray in action, showcasing an end-to-end data science project running on Kubernetes. Acquire the knowledge needed to leverage Ray's capabilities for cloud-native data science and enhance your workflow efficiency.
Syllabus
Next-Generation Data Science Workflows Using Ray - Erik Erlandson, Red Hat
Taught by
CNCF [Cloud Native Computing Foundation]
Related Courses
Computer Vision: The FundamentalsUniversity of California, Berkeley via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning for Musicians and Artists
Goldsmiths University of London via Kadenze Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera