YoVDO

Neural Networks Meet Nonparametric Regression: Generalization by Weight Decay and Large Learning Rates

Offered By: Simons Institute via YouTube

Tags

Neural Networks Courses Deep Learning Courses Kernel Methods Courses Curve Fitting Courses Generalization Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the intersection of neural networks and nonparametric regression in this insightful lecture by Yu-Xiang Wang from UC San Diego. Delve into the reasons behind the superior performance of overparameterized deep learning models compared to classical methods like kernels and splines. Examine how standard hyperparameter tuning in deep neural networks (DNNs) implicitly uncovers hidden sparsity and low-dimensional structures, leading to improved adaptivity. Gain new perspectives on overparameterization, representation learning, and the generalization capabilities of neural networks through optimization-algorithm induced implicit biases such as Edge-of-Stability and Minima Stability. Analyze theory and examples that illustrate how DNNs achieve adaptive and near-optimal generalization, shedding light on their effectiveness in practical applications.

Syllabus

Neural Networks meet Nonparametric Regression: Generalization by Weight Decay and Large...


Taught by

Simons Institute

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera
Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera
Leading Ambitious Teaching and Learning
Microsoft via edX