Neural Heuristics for Mathematical Optimization via Value Function Approximation
Offered By: GERAD Research Center via YouTube
Course Description
Overview
Explore the cutting-edge application of neural heuristics in mathematical optimization through value function approximation in this 51-minute DS4DM Coffee Talk. Delve into Justin Dumouchelle's research from the University of Toronto, presented at the GERAD Research Center. Learn how a single learning-based framework can be adapted to stochastic optimization, bilevel optimization, and robust optimization, addressing real-world problems involving uncertainty and agent reactions. Discover the empirical findings that demonstrate solutions of similar or superior quality to state-of-the-art algorithms, often achieved in significantly less time. Gain insights into the open-sourced datasets and frameworks, including Neur2SP, Neur2RO, and Neur2BiLO, and their potential applications in various optimization domains.
Syllabus
Neural Heuristics for Mathematical Optimization via Value Function Approximation, Justin Dumouchelle
Taught by
GERAD Research Center
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent