Neil Olver: On the Integrality Gap of the Prize Collecting Steiner Forest LP
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore a lecture on the integrality gap of the prize collecting Steiner forest LP, delivered as part of the Hausdorff Trimester Program's follow-up workshop on Combinatorial Optimization. Delve into the prize collecting Steiner forest problem, where the objective is to select a subgraph minimizing the sum of edge costs and penalties for unconnected terminal pairs. Discover how the speaker challenges the long-held belief that the integrality gap of the natural LP formulation for this problem is 2, presenting evidence of a gap of at least 9/4, even for planar graphs. Examine the Steiner forest problem, natural cut LP for PCSF, approximation results, and the approximate integer decomposition property. Investigate a potential generalization and an optimistic conjecture before analyzing the construction and integrality gap findings. Gain insights from this collaborative work involving researchers from various institutions, offering a comprehensive exploration of this combinatorial optimization challenge.
Syllabus
Intro
The Steiner forest problem
Natural cut LP for PCSF
Approximation results
The approximate integer decomposition property
A generalization? Optimistic conjecture
The construction
Integrality gap
Conclusion
Taught by
Hausdorff Center for Mathematics
Related Courses
Linear and Discrete OptimizationÉcole Polytechnique Fédérale de Lausanne via Coursera Linear and Integer Programming
University of Colorado Boulder via Coursera Approximation Algorithms Part I
École normale supérieure via Coursera Approximation Algorithms Part II
École normale supérieure via Coursera Delivery Problem
University of California, San Diego via Coursera