Machine Learning in Condensed Matter and Materials Physics
Offered By: Alan Turing Institute via YouTube
Course Description
Overview
Syllabus
Intro
Atomic-scale modeling of real materials ⚫ Foundations for the predictive modeling of chemicals and materials Key challenge: accurate electronic properties + sampling of fluctuations/defec
Predicting properties beyond potentials • Symmetry-adapted ML for tensors: CCSD-quality molecular polarizabilities & d • Electron charge density for molecules (and condensed phases!) • Single-particle Hamiltonians: ML that knows molecular orbital theory!
Structural and functional properties, combined • Predicting any property accessible to quantum calculations • Realistic time and size scales, with first-principles accuracy and mapping of stru functional properties
TUNNELING DENSITY OF STATES IN 1962
X-ray diffraction in 1913
Projective Measurements in 1922
DETERMINED BY WEIGHTS AND BIAS
Hypothesis test
Learn the sorting criteria for emerger
Discoveries
Machine Learning Quantum Emergence From Quantum Matter Data
Taught by
Alan Turing Institute
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent