Multi-Factor Context-Aware Language Modeling - 2018
Offered By: Center for Language & Speech Processing(CLSP), JHU via YouTube
Course Description
Overview
Explore a cutting-edge approach to language modeling in this 48-minute lecture by Mari Ostendorf from the University of Washington. Delve into the concept of multi-factor context-aware language modeling, which addresses the challenge of language variation across different contexts. Learn about a novel mechanism for incorporating contextual factors into recurrent neural network (RNN) language models, allowing for efficient handling of both continuous and discrete variables. Discover how this approach improves upon existing methods by using context vectors to control low-rank transformations of the recurrent layer weight matrix. Examine experimental results demonstrating performance gains across various contexts and datasets, and understand the computational efficiency of this method compared to alternatives. Gain insights from Ostendorf's extensive research in dynamic statistical models for speech and language processing, and her work on integrating acoustic, prosodic, and language cues for speech understanding and generation.
Syllabus
Multi-Factor Context-Aware Language Modeling -- Mari Ostendorf (University of Washington) - 2018
Taught by
Center for Language & Speech Processing(CLSP), JHU
Related Courses
Miracles of Human Language: An Introduction to LinguisticsLeiden University via Coursera Language and Mind
Indian Institute of Technology Madras via Swayam Text Analytics with Python
University of Canterbury via edX Playing With Language
TED-Ed via YouTube Computational Language: A New Kind of Science
World Science U