Modern Numerical Methods in Computational Relativity - Lecture 5
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore advanced techniques in computational relativity through the fifth lecture of the "Modern Numerical Methods in Computational Relativity" series, delivered by Geoffrey Lovelace. Delve into cutting-edge approaches for solving Einstein's field equations numerically, essential for modeling complex astrophysical phenomena such as black hole mergers, neutron star collisions, and gravitational wave generation. Gain insights into the latest computational methods used in numerical relativity, building upon foundational knowledge in general relativity, partial differential equations, and numerical analysis. Enhance your understanding of how these advanced numerical techniques contribute to our ability to simulate and study high-energy astrophysical events, crucial for interpreting gravitational wave observations and advancing our comprehension of the universe's most extreme phenomena.
Syllabus
Modern Numerical Methods in Computational Relativity (Lecture 5) by Geoffrey Lovelace
Taught by
International Centre for Theoretical Sciences
Related Courses
Analyzing the UniverseRutgers University via Coursera Astrophysics: The Violent Universe
Australian National University via edX Астрофизика: от звезд до границ Вселенной
St. Petersburg State Polytechnic University via Coursera Stars And Stellar Systems
IUCAA via Swayam Nuclear Physics Fundamentals and Application
NPTEL via YouTube