Modern Numerical Methods in Computational Relativity - Lecture 5
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore advanced techniques in computational relativity through the fifth lecture of the "Modern Numerical Methods in Computational Relativity" series, delivered by Geoffrey Lovelace. Delve into cutting-edge approaches for solving Einstein's field equations numerically, essential for modeling complex astrophysical phenomena such as black hole mergers, neutron star collisions, and gravitational wave generation. Gain insights into the latest computational methods used in numerical relativity, building upon foundational knowledge in general relativity, partial differential equations, and numerical analysis. Enhance your understanding of how these advanced numerical techniques contribute to our ability to simulate and study high-energy astrophysical events, crucial for interpreting gravitational wave observations and advancing our comprehension of the universe's most extreme phenomena.
Syllabus
Modern Numerical Methods in Computational Relativity (Lecture 5) by Geoffrey Lovelace
Taught by
International Centre for Theoretical Sciences
Related Courses
Inflationary CosmologyMassachusetts Institute of Technology via World Science U Gravity! The Big Bang, Black Holes and Gravitational Waves
Paris Diderot University via FutureLearn Gravité! Du Big Bang aux Trous Noirs
Paris Diderot University via France Université Numerique Einstein's Astrophysical Messengers
Louisiana State University via World Science U Introduction into General Theory of Relativity
Higher School of Economics via Coursera