YoVDO

Modern Numerical Methods in Computational Relativity - Lecture 3

Offered By: International Centre for Theoretical Sciences via YouTube

Tags

Numerical Relativity Courses Black Holes Courses Partial Differential Equations Courses General Relativity Courses Neutron Stars Courses Gravitational Waves Courses Finite Element Method Courses Finite Difference Method Courses Spectral Methods Courses Computational Relativity Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore advanced numerical techniques in computational relativity through this comprehensive lecture, part of a summer school on gravitational-wave astronomy. Delve into modern methods used to solve Einstein's field equations and simulate high-energy astrophysical phenomena such as black hole mergers, neutron star collisions, and stellar collapses. Learn how these computational tools contribute to the analysis of gravitational-wave signals and multi-messenger observations. Gain insights from expert Geoffrey Lovelace on cutting-edge approaches in numerical relativity, essential for modeling complex spacetime dynamics and informing gravitational-wave astronomy research.

Syllabus

Modern Numerical Methods in Computational Relativity (Lecture 3) by Geoffrey Lovelace


Taught by

International Centre for Theoretical Sciences

Related Courses

Graph Convolutional Networks - GNN Paper Explained
Aleksa Gordić - The AI Epiphany via YouTube
Understanding, Interpreting and Designing Neural Network Models Through Tensor Representations
Institute for Pure & Applied Mathematics (IPAM) via YouTube
The Kikuchi Hierarchy and Tensor PCA
Institute for Pure & Applied Mathematics (IPAM) via YouTube
Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry
Hausdorff Center for Mathematics via YouTube
Graph Alignment: Informational and Computational Limits - Lecture 2
International Centre for Theoretical Sciences via YouTube