Modern Numerical Methods in Computational Relativity - Lecture 3
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore advanced numerical techniques in computational relativity through this comprehensive lecture, part of a summer school on gravitational-wave astronomy. Delve into modern methods used to solve Einstein's field equations and simulate high-energy astrophysical phenomena such as black hole mergers, neutron star collisions, and stellar collapses. Learn how these computational tools contribute to the analysis of gravitational-wave signals and multi-messenger observations. Gain insights from expert Geoffrey Lovelace on cutting-edge approaches in numerical relativity, essential for modeling complex spacetime dynamics and informing gravitational-wave astronomy research.
Syllabus
Modern Numerical Methods in Computational Relativity (Lecture 3) by Geoffrey Lovelace
Taught by
International Centre for Theoretical Sciences
Related Courses
Inflationary CosmologyMassachusetts Institute of Technology via World Science U Gravity! The Big Bang, Black Holes and Gravitational Waves
Paris Diderot University via FutureLearn Gravité! Du Big Bang aux Trous Noirs
Paris Diderot University via France Université Numerique Einstein's Astrophysical Messengers
Louisiana State University via World Science U Introduction into General Theory of Relativity
Higher School of Economics via Coursera