Model Based Reinforcement Learning - Policy Iteration, Value Iteration, and Dynamic Programming
Offered By: Steve Brunton via YouTube
Course Description
Overview
Explore dynamic programming as a fundamental concept in model-based reinforcement learning. Delve into policy iteration and value iteration techniques, leading to an understanding of the quality function and Q-learning. Learn how these methods form the basis for solving reinforcement learning problems. Gain insights from examples and explanations provided in this 27-minute lecture, which is part of a comprehensive series on reinforcement learning based on the new Chapter 11 from the 2nd edition of "Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" by Brunton and Kutz.
Syllabus
REINFORCEMENT LEARNING
VALUE FUNCTION
DYNAMIC PROGRAMMING!
VALUE ITERATION
POLICY ITERATION
QUALITY FUNCTION
Taught by
Steve Brunton
Related Courses
Algorithms: Design and Analysis, Part 2Stanford University via Coursera Discrete Optimization
University of Melbourne via Coursera Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera Computability, Complexity & Algorithms
Georgia Institute of Technology via Udacity Discrete Inference and Learning in Artificial Vision
École Centrale Paris via Coursera