Model Based Reinforcement Learning - Policy Iteration, Value Iteration, and Dynamic Programming
Offered By: Steve Brunton via YouTube
Course Description
Overview
Explore dynamic programming as a fundamental concept in model-based reinforcement learning. Delve into policy iteration and value iteration techniques, leading to an understanding of the quality function and Q-learning. Learn how these methods form the basis for solving reinforcement learning problems. Gain insights from examples and explanations provided in this 27-minute lecture, which is part of a comprehensive series on reinforcement learning based on the new Chapter 11 from the 2nd edition of "Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" by Brunton and Kutz.
Syllabus
REINFORCEMENT LEARNING
VALUE FUNCTION
DYNAMIC PROGRAMMING!
VALUE ITERATION
POLICY ITERATION
QUALITY FUNCTION
Taught by
Steve Brunton
Related Courses
Computational NeuroscienceUniversity of Washington via Coursera Reinforcement Learning
Brown University via Udacity Reinforcement Learning
Indian Institute of Technology Madras via Swayam FA17: Machine Learning
Georgia Institute of Technology via edX Introduction to Reinforcement Learning
Higher School of Economics via Coursera