YoVDO

Mobile Majorana Zero Modes in Two-Channel Kondo Lattices - Rebecca Flint

Offered By: Kavli Institute for Theoretical Physics via YouTube

Tags

Topological Insulators Courses Superconductors Courses Semimetals Courses Higher Order Topology Courses Moire Heterostructures Courses

Course Description

Overview

Explore the fascinating world of mobile Majorana zero modes in two-channel Kondo lattices in this 46-minute conference talk by Rebecca Flint from Iowa State University. Delve into the interplay between topology, symmetry, and interactions in condensed matter physics. Examine recent theoretical and experimental advancements in the field, focusing on the effects of correlations on topological insulators, semimetals, and superconductors. Investigate how symmetry and strong correlations produce correlated topological phases in Kondo systems. Discover connections between higher-order topology and fracton systems, and explore the potential of topology as a framework for understanding strongly correlated gapless phases. Gain insights into the unifying themes of electronic topology across various materials and correlation strengths, as part of the broader discussion on quantum crystals and correlated topology at the Kavli Institute for Theoretical Physics.

Syllabus

Mobile Majorana zero modes in two-channel Kondo lattices ▸ Rebecca Flint (ISU)


Taught by

Kavli Institute for Theoretical Physics

Related Courses

From Abelian Anyons in Moiré Matter to Non-Abelions in Synthetic Quantum Systems - Ashvin Vishwanath
Kavli Institute for Theoretical Physics via YouTube
Anyons- Fractionalization and Dynamics - Nandini Trivedi
Kavli Institute for Theoretical Physics via YouTube
Quantum Materials Under Nonlinear Spotlight - Probing Symmetry and Quantum Geometry
Kavli Institute for Theoretical Physics via YouTube
Correlated Phases in Geometrically Frustrated Lattices - Ming Yi
Kavli Institute for Theoretical Physics via YouTube
Illuminating Signatures of Gapless Topology and Correlations - Contrasting Nonlinear Optical Responses
Kavli Institute for Theoretical Physics via YouTube