MLP-Mixer - An All-MLP Architecture for Vision - Machine Learning Research Paper Explained
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore a comprehensive analysis of the MLP-Mixer architecture, a novel approach to computer vision that challenges the dominance of Convolutional Neural Networks and Vision Transformers. Dive into the architecture's unique design, which relies exclusively on multi-layer perceptrons (MLPs) applied to image patches and across spatial dimensions. Examine experimental results demonstrating MLP-Mixer's competitive performance on image classification benchmarks when trained on large datasets. Investigate the effects of scale on the model's performance and visualize learned weights to gain insights into its inner workings. Conclude with a discussion on the implications of this research for future developments in computer vision and deep learning architectures.
Syllabus
- Intro & Overview
- MLP-Mixer Architecture
- Experimental Results
- Effects of Scale
- Learned Weights Visualization
- Comments & Conclusion
Taught by
Yannic Kilcher
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Computational Photography
Georgia Institute of Technology via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera Introduction to Computer Vision
Georgia Institute of Technology via Udacity