MLOps: OpenVino Quantized Pipeline for Grammatical Error Correction
Offered By: The Machine Learning Engineer via YouTube
Course Description
Overview
Aprende a construir un modelo de corrección de errores gramaticales en texto en este vídeo tutorial de 50 minutos. Explora la creación de un pipeline que combina un detector de errores basado en Roberta Base entrenado con el dataset CoLa y un corrector de errores construido sobre Flan-T5 large, entrenado específicamente con el dataset JFLEG. Descubre cómo transformar estos componentes al formato IR de OpenVino y aplicar técnicas de cuantización al componente de corrección para optimizar su rendimiento. Accede al notebook complementario en GitHub para seguir el proceso paso a paso y profundizar en la implementación práctica de este proyecto de procesamiento de lenguaje natural.
Syllabus
MLOps: OpenVino Quantized Pipeline Corrección de Errores Gramaticales #datascience #machinelearning
Taught by
The Machine Learning Engineer
Related Courses
Introduction to T5 for Sentiment Span ExtractionAbhishek Thakur via YouTube Large Language Models: Foundation Models from the Ground Up
Databricks via edX Large Language Models
Databricks via edX LLM Foundations - LLM Bootcamp
The Full Stack via YouTube Large Language Models Simplified
Data Science Dojo via YouTube