YoVDO

MLOps: OpenVino Quantized Pipeline for Grammatical Error Correction

Offered By: The Machine Learning Engineer via YouTube

Tags

Machine Learning Courses MLOps Courses Quantization Courses OpenVINO Courses T5 Courses RoBERTa Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Aprende a construir un modelo de corrección de errores gramaticales en texto en este vídeo tutorial de 50 minutos. Explora la creación de un pipeline que combina un detector de errores basado en Roberta Base entrenado con el dataset CoLa y un corrector de errores construido sobre Flan-T5 large, entrenado específicamente con el dataset JFLEG. Descubre cómo transformar estos componentes al formato IR de OpenVino y aplicar técnicas de cuantización al componente de corrección para optimizar su rendimiento. Accede al notebook complementario en GitHub para seguir el proceso paso a paso y profundizar en la implementación práctica de este proyecto de procesamiento de lenguaje natural.

Syllabus

MLOps: OpenVino Quantized Pipeline Corrección de Errores Gramaticales #datascience #machinelearning


Taught by

The Machine Learning Engineer

Related Courses

Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Principles of Communication Systems - I
Indian Institute of Technology Kanpur via Swayam
Digital Signal Processing 2: Filtering
École Polytechnique Fédérale de Lausanne via Coursera
Digital Signal Processing 3: Analog vs Digital
École Polytechnique Fédérale de Lausanne via Coursera
Digital Signal Processing 4: Applications
École Polytechnique Fédérale de Lausanne via Coursera