MLOps: OpenVino Quantized Model para Detección de Errores Tipográficos
Offered By: The Machine Learning Engineer via YouTube
Course Description
Overview
Explora cómo construir un modelo de detección de errores tipográficos utilizando un modelo Distilbert como base y clasificación de tokens en este tutorial de 21 minutos. Aprende a personalizar el modelo con el dataset neuspell, convertirlo al formato IR de OpenVino y realizar inferencia en la CPU. Sigue paso a paso el proceso de desarrollo del modelo, desde la preparación de datos hasta la implementación final, utilizando técnicas de MLOps y cuantización para optimizar el rendimiento. Accede al notebook proporcionado en GitHub para una experiencia práctica en la creación de un detector de errores tipográficos eficiente y escalable.
Syllabus
MLOps: OpenVino Quantized Model para detección de errores tipográficos #datascience #machinelearning
Taught by
The Machine Learning Engineer
Related Courses
Machine Learning Operations (MLOps): Getting StartedGoogle Cloud via Coursera Проектирование и реализация систем машинного обучения
Higher School of Economics via Coursera Demystifying Machine Learning Operations (MLOps)
Pluralsight Machine Learning Engineer with Microsoft Azure
Microsoft via Udacity Machine Learning Engineering for Production (MLOps)
DeepLearning.AI via Coursera