MLOps MLFlow: MLflow Projects with PySpark Docker Environments
Offered By: The Machine Learning Engineer via YouTube
Course Description
Overview
Explore MLflow Projects using PySpark applications in Docker environments and Databricks as an artifact repository and tracking server in this 31-minute video tutorial. Learn how to integrate MLflow with PySpark and Docker to create efficient machine learning pipelines. Discover techniques for managing environments, tracking experiments, and storing artifacts using Databricks. Gain hands-on experience by following along with the provided code repository, enhancing your skills in MLOps, data science, and machine learning workflows.
Syllabus
MLOps MLFlow: Mlflow Projects : Pyspark Docker Envi & MLflow #datascience #machinelearning
Taught by
The Machine Learning Engineer
Related Courses
Fundamentals of Scalable Data ScienceIBM via Coursera Data Science and Engineering with Spark
Berkeley University of California via edX Master of Machine Learning and Data Science
Imperial College London via Coursera Data Analysis Using Pyspark
Coursera Project Network via Coursera Building Machine Learning Pipelines in PySpark MLlib
Coursera Project Network via Coursera