MLOps: Databricks MLFlow and Optuna Hyper-parameter Tuning
Offered By: The Machine Learning Engineer via YouTube
Course Description
Overview
Explore hyperparameter tuning of an XGBoost model using Databricks, MLflow, and Optuna in this 37-minute video tutorial. Learn how to leverage these powerful tools in combination to optimize machine learning models. Gain hands-on experience with MLOps practices as you follow along with the step-by-step demonstration. Access the accompanying code on GitHub to further enhance your understanding and apply the techniques to your own projects.
Syllabus
MLOps MLFlow: Databricks MLFLow and Optuna Hyper-parameter Tuning
Taught by
The Machine Learning Engineer
Related Courses
Predicción del fraude bancario con autoML y PycaretCoursera Project Network via Coursera Clasificación de datos de Satélites con autoML y Pycaret
Coursera Project Network via Coursera Regresión (ML) en la vida real con PyCaret
Coursera Project Network via Coursera ML Pipelines on Google Cloud
Google Cloud via Coursera ML Pipelines on Google Cloud
Pluralsight