MLOps: Databricks MLFlow and Optuna Hyper-parameter Tuning
Offered By: The Machine Learning Engineer via YouTube
Course Description
Overview
Explore hyperparameter tuning of an XGBoost model using Databricks, MLflow, and Optuna in this 37-minute video tutorial. Learn how to leverage these powerful tools in combination to optimize machine learning models. Gain hands-on experience with MLOps practices as you follow along with the step-by-step demonstration. Access the accompanying code on GitHub to further enhance your understanding and apply the techniques to your own projects.
Syllabus
MLOps MLFlow: Databricks MLFLow and Optuna Hyper-parameter Tuning
Taught by
The Machine Learning Engineer
Related Courses
Data Processing with AzureLearnQuest via Coursera Mejores prácticas para el procesamiento de datos en Big Data
Coursera Project Network via Coursera Data Science with Databricks for Data Analysts
Databricks via Coursera Azure Data Engineer con Databricks y Azure Data Factory
Coursera Project Network via Coursera Curso Completo de Spark con Databricks (Big Data)
Coursera Project Network via Coursera