YoVDO

Human - AI Interaction Loop Training as a New Approach for Interactive Learning

Offered By: MLCon | Machine Learning Conference via YouTube

Tags

MLCon Courses Machine Learning Courses Reinforcement Learning Courses Imitation Learning Courses Human-AI Interaction Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a novel approach to interactive learning that combines Imitation Learning (IL) with Reinforcement Learning (RL) methods in this conference talk from ML Conference 2019. Dive into the challenges of using RL in complex decision-making tasks and discover how IL can leverage human-sourced assistance to overcome these obstacles. Learn about the proposed method that integrates IL with State-action-reward-state-action (SARSA) and Proximal Policy Optimization (PPO) algorithms to enhance agent learning in sequential decision-making policies. Examine the results of this innovative approach tested on various OpenAI-Gym environments, showcasing significant reductions in teacher effort and exploration costs. Gain insights into the potential of human-AI interaction loop training for improving machine learning outcomes in high-dimensional and continuous environments.

Syllabus

ML Conference 2019 - Human / AI Interaction Loop Training as a new Approach for interactive Learning


Taught by

MLCon | Machine Learning Conference

Related Courses

Computational Neuroscience
University of Washington via Coursera
Reinforcement Learning
Brown University via Udacity
Reinforcement Learning
Indian Institute of Technology Madras via Swayam
FA17: Machine Learning
Georgia Institute of Technology via edX
Introduction to Reinforcement Learning
Higher School of Economics via Coursera