Human - AI Interaction Loop Training as a New Approach for Interactive Learning
Offered By: MLCon | Machine Learning Conference via YouTube
Course Description
Overview
Explore a novel approach to interactive learning that combines Imitation Learning (IL) with Reinforcement Learning (RL) methods in this conference talk from ML Conference 2019. Dive into the challenges of using RL in complex decision-making tasks and discover how IL can leverage human-sourced assistance to overcome these obstacles. Learn about the proposed method that integrates IL with State-action-reward-state-action (SARSA) and Proximal Policy Optimization (PPO) algorithms to enhance agent learning in sequential decision-making policies. Examine the results of this innovative approach tested on various OpenAI-Gym environments, showcasing significant reductions in teacher effort and exploration costs. Gain insights into the potential of human-AI interaction loop training for improving machine learning outcomes in high-dimensional and continuous environments.
Syllabus
ML Conference 2019 - Human / AI Interaction Loop Training as a new Approach for interactive Learning
Taught by
MLCon | Machine Learning Conference
Related Courses
Why Security Is Important in ML and How To Secure Your ML-based SolutionsMLCon | Machine Learning Conference via YouTube Using A.I to Make Recommendations for Career Progression
MLCon | Machine Learning Conference via YouTube Kotlin for Machine Learning
MLCon | Machine Learning Conference via YouTube Honey, I Shrunk the TinyML
MLCon | Machine Learning Conference via YouTube Using Predictive Analytics and Machine Learning
MLCon | Machine Learning Conference via YouTube