YoVDO

Diverse Data and Efficient Algorithms for Robot Learning

Offered By: Massachusetts Institute of Technology via YouTube

Tags

Artificial Intelligence Courses Machine Learning Courses Computer Vision Courses Reinforcement Learning Courses Self-supervised Learning Courses Data Collection Courses Predictive Modeling Courses

Course Description

Overview

Explore diverse data collection and efficient algorithms for robot learning in this MIT Embodied Intelligence Seminar featuring Lerrel Pinto from NYU and UC Berkeley. Delve into the challenges of applying machine learning to robotics, focusing on large-scale data collection and efficient reinforcement learning for deformable object manipulation. Discover self-supervised grasping techniques, robot learning in homes, and the importance of forward models in robotic systems. Gain insights into conditional policy learning, contrastive representations, and one-step model predictive control. Examine quantitative evaluations and real-world robot experiments that demonstrate the practical applications of these cutting-edge approaches in robotics.

Syllabus

Intro
Progress in Robotics
Success stories in Al
Key ingredients of learning
Learning for robotics
How to grasp objects?
Self-supervised grasping
Robot learning in the wild?
Robot learning in homes
Large scale robot learning
Rich history
Under the hood
Deformable Object Manipulation
Approach
Key Challenges
Solutions
Conditional Policy Learning with MVP
Real Robot Experiments
Why forward models?
Learning visual forward models
Learning predictive representations
Contrastive representations
Contrastive forward models
One step MPC
Quantitative evaluation


Taught by

MIT Embodied Intelligence

Tags

Related Courses

Big Data Analytics in Healthcare
Georgia Institute of Technology via Udacity
Model Building and Validation
AT&T via Udacity
Maths for Humans: Linear, Quadratic & Inverse Relations
University of New South Wales via FutureLearn
Regression Modeling in Practice
Wesleyan University via Coursera
Data Science at Scale - Capstone Project
University of Washington via Coursera