YoVDO

MIT Computational Biology - Genomes, Networks, Evolution, Health - Fall 2018

Offered By: Massachusetts Institute of Technology via YouTube

Tags

Genomics Courses Health & Medicine Courses Hidden Markov Models Courses Epigenomics Courses Evolution Courses Dynamic programming Courses Network Analysis Courses Computational Biology Courses

Course Description

Overview

Dive into a comprehensive lecture series on computational biology from MIT's Fall 2018 semester, covering a wide range of topics including genomes, networks, evolution, and health. Explore dynamic programming, database search, hidden Markov models, gene expression analysis, RNA biology, epigenomics, 3D genome structure, regulatory genomics, network analysis, deep learning, population genomics, genome-wide association studies, eQTLs, heritability, comparative genomics, genome assembly, phylogenetics, single-cell genomics, cancer genomics, multi-phenotype analyses, and genome engineering. Gain insights from expert instructors over the course of 24 lectures, totaling more than 31 hours of in-depth content. Note that a more recent version from Fall 2019 is also available for those seeking the most up-to-date information in this rapidly evolving field.

Syllabus

MIT CompBio Lecture 01 - Introduction.
MIT CompBio Lecture 02 - DynamicProgramming (Part1).
MIT CompBio Lecture 02 - DynamicProgramming (Part2).
MIT CompBio Lecture 03 - Database Search.
MIT CompBio Lecture 04 - HMMs I.
MIT CompBio Lecture 05 - HMMs II.
MIT CompBio Lecture 06 - Gene Expression Analysis: Clustering and Classification.
MIT CompBio Lecture 07 - RNA world, RNA-seq, RNA folding.
MIT CompBio Lecture 08 - Epigenomics.
MIT CompBio Lecture 09 - Three Dimensional Genome.
MIT CompBio Lecture 10 - Regulatory Genomics.
MIT CompBio Lecture 11 - Network Analysis.
MIT CompBio Lecture 12 - Deep Learning.
MIT CompBio Lecture 13 - Population Genomics.
MIT CompBio Lecture 14 - GWAS (part 1).
MIT CompBio Lecture 14 - GWAS (part 2).
MIT CompBio Lecture 15 - eQTLs.
MIT Compbio Lecture 16 - Heritability.
MIT CompBio Lecture 17 - Comparative Genomics.
MIT CompBio Lecture 18 - Genome Assembly, Evolution, Duplication.
MIT CompBio Lecture 19 - Phylogenetics.
MIT CompBio Lecture 20 - Phylogenomics.
MIT CompBio Lecture 21 - Single-Cell Genomics.
MIT CompBio Lecture 22 - Cancer Genomics.
MIT CompBio Lecture 23 - Multi-Phenotype analyses.
MIT CompBio Lecture 24 - Genome Engineering.


Taught by

Manolis Kellis

Tags

Related Courses

An Introduction to Computer Networks
Stanford University via Independent
Introduction to Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera
Network Analysis in Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera
Networks, Crowds and Markets
Cornell University via edX
Networking Leadership 101: Building Your Core Professional Network
Center for Creative Leadership via Acumen Academy