Convolutional Neural Networks for Computer Vision - MIT 6.S191 Lecture 3
Offered By: Alexander Amini via YouTube
Course Description
Overview
Explore the fundamentals of Convolutional Neural Networks (CNNs) for computer vision in this comprehensive lecture from MIT's Introduction to Deep Learning course. Delve into the world of visual feature learning, understanding how computers perceive images and the importance of feature extraction. Learn about the convolution operation, the architecture of CNNs, and the roles of non-linearity and pooling layers. Gain practical insights through an end-to-end code example and discover real-world applications, including object detection and self-driving cars. This in-depth presentation covers everything from basic concepts to advanced applications, providing a solid foundation for understanding and implementing CNNs in computer vision tasks.
Syllabus
- Introduction
- Amazing applications of vision
- What computers "see"
- Learning visual features
- Feature extraction and convolution
- The convolution operation
- Convolution neural networks
- Non-linearity and pooling
- End-to-end code example
- Applications
- Object detection
- End-to-end self driving cars
- Summary
Taught by
https://www.youtube.com/@AAmini/videos
Related Courses
Computer Vision: The FundamentalsUniversity of California, Berkeley via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning for Musicians and Artists
Goldsmiths University of London via Kadenze Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera