YoVDO

The Elusive Generalization and Easy Optimization - Part 2

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Machine Learning Courses Data Science Courses Neural Networks Courses Gradient Descent Courses Overfitting Courses Generalization Courses Statistical Learning Theory Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the second part of a comprehensive lecture on generalization and optimization in machine learning, presented by Misha Belkin from the University of California, San Diego. Delve into the evolving understanding of generalization in machine learning, focusing on recent developments driven by empirical findings in neural networks. Examine how these discoveries have necessitated a reevaluation of theoretical foundations. Gain insights into the optimization process using gradient descent and discover why large non-convex systems are surprisingly easy to optimize through local methods. Enhance your knowledge of key concepts in data science and artificial intelligence through this in-depth presentation, part of IPAM's Mathematics of Intelligences Tutorials at UCLA.

Syllabus

Misha Belkin - The elusive generalization and easy optimization, Pt. 2 of 2 - IPAM at UCLA


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent