Mirror Diffusion Models for Constrained and Watermarked Generation
Offered By: Valence Labs via YouTube
Course Description
Overview
Explore the concept of Mirror Diffusion Models (MDM) for constrained and watermarked generation in this comprehensive talk by Guan-Horng Liu from Valence Labs. Delve into the challenges of applying diffusion models to constrained data sets and discover how MDM offers a solution by learning diffusion processes in a dual space constructed from a mirror map. Examine the efficient computation of mirror maps for popular constrained sets like simplices and ℓ2-balls, and understand how MDM outperforms existing methods. Investigate the potential of constrained sets as a mechanism for embedding invisible watermarks in generated data for safety and privacy purposes. Gain insights into the algorithmic opportunities for learning tractable diffusion on complex domains through this in-depth presentation, which includes a paper discussion and Q&A session.
Syllabus
- Intro
- Watermarked Generation
- Watermark as Constrained Set
- Diffusion Model for Constrained Domain
- Mirror Diffusion Model
- Paper Discussion
1 - Q&A
Taught by
Valence Labs
Related Courses
Diffusion Models Beat GANs on Image Synthesis - Machine Learning Research Paper ExplainedYannic Kilcher via YouTube Diffusion Models Beat GANs on Image Synthesis - ML Coding Series - Part 2
Aleksa Gordić - The AI Epiphany via YouTube OpenAI GLIDE - Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Aleksa Gordić - The AI Epiphany via YouTube Food for Diffusion
HuggingFace via YouTube Imagen: Text-to-Image Generation Using Diffusion Models - Lecture 9
University of Central Florida via YouTube