YoVDO

Courant, Bezout, and Persistence - Lecture 2

Offered By: University of Chicago Department of Mathematics via YouTube

Tags

Algebraic Topology Courses Riemannian Manifolds Courses Persistence Modules Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the second lecture of the minicourse "Courant, Bezout, and Persistence" delivered by Leonid Polterovich from Tel Aviv University. Delve into an innovative approach to studying function oscillation using persistence modules and barcodes, a technique rooted in algebraic topology and data analysis. Discover how this method applies to spectral geometry, particularly in analyzing eigenfunctions of the Laplace-Beltrami operator on Riemannian manifolds. Examine an extension of Courant's nodal domain theorem for linear combinations of eigenfunctions, addressing a long-standing problem in the field. Investigate a version of Bezout's theorem in the context of eigenfunctions, supporting the intuition that eigenfunctions behave similarly to polynomials with degrees comparable to the square root of the eigenvalue. Gain insights into the necessary fundamentals of topological persistence and spectral geometry. The lecture draws from the paper "Coarse nodal count and topological persistence," co-authored by Polterovich and colleagues.

Syllabus

Minicourse: Courant, Bezout, and Persistence - Lecture 2


Taught by

University of Chicago Department of Mathematics

Related Courses

Vanessa Robins - The Extended Persistent Homology Transform for Manifolds with Boundary
Applied Algebraic Topology Network via YouTube
Persistence in Functional Topology
Applied Algebraic Topology Network via YouTube
Parallel Decomposition of Persistence Modules Through Interval Bases
Applied Algebraic Topology Network via YouTube
Detecting Bifurcations in Dynamical Systems with Zigzag Persistent Homology
Applied Algebraic Topology Network via YouTube
Computing Persistent Homology - Introduction
Applied Algebraic Topology Network via YouTube