YoVDO

On the Canonical Geometric Structure of Initial Data for the Einstein Equations

Offered By: Institut des Hautes Etudes Scientifiques (IHES) via YouTube

Tags

General Relativity Courses Differential Geometry Courses Riemannian Geometry Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive lecture on the canonical geometric structure of initial data for Einstein equations. Delve into recent advancements in canonical geometric foliations of asymptotically flat Riemannian manifolds, completing a program initiated by G. Huisken and S.-T. Yau. Examine the connection between these results and effective versions of the positive mass theorem. Investigate R. Schoen's conjecture on the minimal surface proof of the positive mass theorem, including its solution in three space dimensions and important special cases in higher dimensions. Learn about counterexamples to the general conjecture in higher dimensions, presented by Michael Eichmair from the University of Vienna in this 1-hour 17-minute talk at the Institut des Hautes Etudes Scientifiques (IHES).

Syllabus

Michael Eichmair - On the Canonical Geometric Structure of Initial Data for the Einstein Equations


Taught by

Institut des Hautes Etudes Scientifiques (IHES)

Related Courses

Nonlinear Dynamics 1: Geometry of Chaos
Georgia Institute of Technology via Independent
Geometría diferencial y Mecánica: una introducción
Universidad de La Laguna via Miríadax
Geometría diferencial y Mecánica: una introducción
Universidad de La Laguna via Miríadax
Differential Geometry
Math at Andrews via YouTube
On Gradient-Based Optimization - Accelerated, Distributed, Asynchronous and Stochastic
Simons Institute via YouTube