MFBind - A Multi-Fidelity Approach for Evaluating Drugs in Generative Modeling
Offered By: Valence Labs via YouTube
Course Description
Overview
Explore a 55-minute conference talk on MFBind, a multi-fidelity approach for evaluating drugs in generative modeling. Dive into the challenges of current generative models for drug discovery and learn about a novel method that integrates docking and binding free energy simulators to achieve an optimal balance between accuracy and computational cost. Discover how MFBind utilizes a pretraining technique and linear prediction heads to efficiently fit small amounts of high-fidelity data. Examine the extensive experimental results demonstrating MFBind's superior performance in surrogate modeling and its ability to enhance generative models with higher quality compounds. Follow along as speaker Peter Eckmann from Valence Labs presents the background, methodology, results, and conclusions of this innovative approach. Engage with the Q&A session to gain further insights into this cutting-edge research in AI-driven drug discovery.
Syllabus
- Intro + Background
- MFBind
- Results: Surrogate Modeling
- Results: Generative Modeling
- Conclusions
- Q+A
Taught by
Valence Labs
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX