Divide and Conquer - Concept-based Models for Efficient Transfer Learning
Offered By: Stanford University via YouTube
Course Description
Overview
Explore a one-hour conference talk by Shantanu Ghosh from Stanford University on developing concept-based interpretable models for efficient transfer learning in healthcare AI. Dive into the challenges of building generalizable AI models for medical imaging and learn about a novel approach that combines blackbox neural networks with interpretable components. Discover how this method iteratively carves out concept-based models using First Order Logic, potentially improving generalizability and reducing the need for extensive labeled data in target domains. Gain insights into the speaker's research on blurring the distinction between post-hoc explanations and interpretable model construction, and understand the implications for enhancing AI model flexibility, explainability, and transfer efficiency in medical applications.
Syllabus
MedAI #126: Divide & Conquer - Concept-based Models for Efficient Transfer Learning | Shantanu Ghosh
Taught by
Stanford MedAI
Tags
Related Courses
Introduction to Deep LearningMassachusetts Institute of Technology via YouTube Taming Dataset Bias via Domain Adaptation
Alexander Amini via YouTube Making Our Models Robust to Changing Visual Environments
Andreas Geiger via YouTube Learning Compact Representation with Less Labeled Data from Sensors
tinyML via YouTube Geo-localization Framework for Real-world Scenarios - Defense Presentation
University of Central Florida via YouTube