Maximal Torus Actions, Equivariant Principal Bundles and Transverse Equivalence
Offered By: IMSA via YouTube
Course Description
Overview
Explore the intricate world of complex geometry in this 50-minute lecture by Hiroaki Ishida from Kagoshima University. Delve into the one-to-one correspondence between complex manifolds with maximal torus actions and irrational fans, examining their equivalence relations. Gain insights into the connection between this correspondence and canonical foliations. Journey through topics such as maximal transactions, hope surfaces, transverse triple geometry, and complex mindfulness. Discover the classification and theoretical underpinnings of these mathematical concepts, culminating in the presentation of another theorem that further illuminates the subject matter.
Syllabus
Introduction
Maximal Transactions
Definition
Goals
Examples
Hope Surface
Classification
Transverse Triple Geometry
Canonical Formation
Complex Mindfulness
Another Theorem
Conclusion
Taught by
IMSA
Related Courses
Superfícies de Riemann - Aula 21Instituto de Matemática Pura e Aplicada via YouTube Superfícies de Riemann - Aula 22
Instituto de Matemática Pura e Aplicada via YouTube Superfícies de Riemann - Aula 24
Instituto de Matemática Pura e Aplicada via YouTube Teoria de Hodge: Gauss-Manin Connection - Aula 16
Instituto de Matemática Pura e Aplicada via YouTube Superfícies de Riemann - Aula 17
Instituto de Matemática Pura e Aplicada via YouTube