Averaging Result for Differential Equations Perturbed by a Z-Periodic Lorentz Gas
Offered By: Erwin Schrödinger International Institute for Mathematics and Physics (ESI) via YouTube
Course Description
Overview
Explore a 47-minute conference talk on averaging results for differential equations perturbed by a Z-periodic Lorentz gas, presented at the Workshop on "Rare Events in Dynamical Systems" at the Erwin Schrödinger International Institute for Mathematics and Physics. Delve into the study of differential equations with vector fields perturbed by the fast motion of particles in a cylinder, corresponding to the Z-periodic Lorentz gas model introduced by H.A Lorentz in 1905. Examine the asymptotic behavior of solutions when the dynamic accelerates, comparing known results for probability-preserving dynamical systems with the infinite measure-preserving Lorentz gas. Investigate the averaging result expressed as a limit theorem, providing the rate of convergence of the perturbed equation's solution to an averaged ordinary differential equation. Gain insights into the main features of the limit process and the proof methodology based on a limit theorem for non-stationary ergodic sums on the Z-periodic Lorentz gas.
Syllabus
Maxence Phalempin -Averaging result for differential equations perturbed by a Z-periodic Lorentz gas
Taught by
Erwin Schrödinger International Institute for Mathematics and Physics (ESI)
Related Courses
Measure Theory - IMScIMSC via Swayam Chance and Chaos - How to Predict the Unpredictable by Jens Marklof
International Centre for Theoretical Sciences via YouTube Commensurators of Thin Subgroups
International Centre for Theoretical Sciences via YouTube Lyapunov Exponents, From the 1960's to the 2020's by Marcelo Viana
International Centre for Theoretical Sciences via YouTube Noncommutative Ergodic Theory of Higher Rank Lattices
International Mathematical Union via YouTube