Approximating Many-Electron Wave Functions Using Neural Networks - IPAM at UCLA
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a 50-minute lecture on approximating many-electron wave functions using neural networks, presented by Matthew Foulkes of Imperial College at IPAM's Monte Carlo and Machine Learning Approaches in Quantum Mechanics Workshop. Delve into the challenges of solving the many-electron Schrödinger equation and discover how neural networks, particularly the Fermionic neural network architecture, can be used to approximate wave functions while adhering to Fermi-Dirac statistics. Learn about the potential of FermiNet wave functions to enhance the accuracy of variational quantum Monte Carlo methods, rivaling top conventional quantum chemical approaches. Gain insights into the intersection of deep learning and quantum mechanics, and understand how these advancements could revolutionize condensed matter physics, chemistry, and materials physics.
Syllabus
Matthew Foulkes - Approximating Many-Electron Wave Functions using Neural Networks - IPAM at UCLA
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Exploring Quantum PhysicsUniversity of Maryland, College Park via Coursera Unpredictable? Randomness, Chance and Free Will
National University of Singapore via Coursera Statistical Mechanics: Algorithms and Computations
École normale supérieure via Coursera Graphene Science and Technology
Chalmers University of Technology via edX Физика как глобальный проект
National Research Nuclear University MEPhI via Coursera