MAST - A Memory-Augmented Self-Supervised Tracker
Offered By: Launchpad via YouTube
Course Description
Overview
Explore a cutting-edge approach to video tracking and segmentation in this 23-minute presentation on MAST (Memory-Augmented Self-supervised Tracker). Delve into the disadvantages of traditional algorithms and discover how attention mechanisms and Huber loss are leveraged to enhance tracking performance. Learn about the implementation details, image feature alignment techniques, and MAST metrics used to evaluate this innovative method. Compare results with existing approaches and gain insights into the future of self-supervised tracking in computer vision applications.
Syllabus
Introduction
Overview
Video Tracking
Disadvantages
Segmentation
Traditional Algorithms
Attention Mechanisms
Attention Mechanism
Huber Loss
Method
Implementation
MAST Metric
Image Feature Alignment
Comparison Results
Conclusion
Taught by
Launchpad
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent