Solving Inverse Problems With Deep Neural Networks - Robustness Included?
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore the robustness of deep learning methods in solving inverse problems through this 29-minute talk by Martin Genzel at the Hausdorff Center for Mathematics. Delve into an extensive empirical study examining the resilience of deep-learning-based algorithms against adversarial perturbations in underdetermined inverse problems. Discover findings that challenge previous concerns about instabilities, revealing surprising robustness in standard end-to-end network architectures for tasks such as compressed sensing with Gaussian measurements and image recovery from Fourier and Radon measurements. Gain insights into a real-world scenario involving magnetic resonance imaging using the NYU-fastMRI dataset. Learn about the implications of these results for the reliability of deep learning methods in safety-critical applications, and understand how common training techniques can produce resilient networks without sophisticated defense strategies.
Syllabus
Martin Genzel: Solving Inverse Problems With Deep Neural Networks - Robustness Included?
Taught by
Hausdorff Center for Mathematics
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX