Quantum Majority Vote: Amplifying Correctness in Quantum Devices
Offered By: QuICS via YouTube
Course Description
Overview
Explore a 59-minute lecture on quantum majority vote presented by Maris Ozols at QuICS. Delve into the challenges of amplifying correct outcomes in quantum devices with quantum output, and discover a novel approach to this problem. Learn about the task of quantum majority vote, which involves determining the majority state from a product state of qubits. Examine the optimal algorithm's performance, achieving worst-case fidelity of 1/2 + Θ(1/n) and improved fidelity under specific conditions. Investigate the generalization of this algorithm to compute symmetric and equivariant Boolean functions in an unknown quantum basis, and understand its optimal parameters and time complexity. Gain insights into joint research work with Harry Buhrman, Noah Linden, Laura Mančinska, and Ashley Montanaro, as detailed in their arXiv paper.
Syllabus
Maris Ozols: Quantum majority vote
Taught by
QuICS
Related Courses
Linear and Discrete OptimizationÉcole Polytechnique Fédérale de Lausanne via Coursera Linear and Integer Programming
University of Colorado Boulder via Coursera Graph Partitioning and Expanders
Stanford University via NovoEd Discrete Inference and Learning in Artificial Vision
École Centrale Paris via Coursera Convex Optimization
Stanford University via edX