Using Machine Learning to Formulate Mathematical Conjectures - IPAM at UCLA
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore how machine learning can be utilized to formulate mathematical conjectures in this insightful lecture by Marc Lackenby from the University of Oxford. Delve into the application of supervised learning in discovering connections between different areas of low-dimensional topology and geometry, focusing on predicting knot signatures from hyperbolic invariants. Examine the process of formulating and proving precise conjectures based on machine learning insights, while also discussing the method's limitations, including challenges in interpreting patterns and addressing outliers. Gain valuable insights into the potential applications of this approach across various mathematical fields and discover new examples of unexpected conjectural connections in low-dimensional topology uncovered through machine learning techniques.
Syllabus
Intro
Supervised learning
The branches of knot theory
Connections with dimension 4
Using machine learning in knot theory
Hyperbolic structures
Signature and cusp geometry
The natural slope
First conjectures
Difficulties with this method
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
From Hyperbolic Geometry to Data ClusteringOpen Data Science via YouTube Knots and Surfaces I - Algebraic Topology - NJ Wildberger
Insights into Mathematics via YouTube Primes and Knots - Akshay Venkatesh
Institute for Advanced Study via YouTube Knotty Problems - Marc Lackenby
University of Oxford via YouTube Khovanov Homology and Surfaces in Four-Manifolds
Joint Mathematics Meetings via YouTube