Managing Thousands of Automatic Machine Learning Experiments with Argo and Katib
Offered By: CNCF [Cloud Native Computing Foundation] via YouTube
Course Description
Overview
Explore the integration of Automated Machine Learning (AutoML) with cloud-native technologies in this conference talk. Learn how to manage thousands of complex hyperparameter tuning experiments using Argo and Katib for optimal performance. Discover best practices, including Argo caching and synchronization, for efficiently developing and deploying AutoML algorithms in production environments. Gain insights into Kubernetes-native workflow orchestration and hyperparameter tuning at scale through practical demonstrations and examples. Understand the architecture of KDP, the benefits of algorithmic workflows, and the implementation of multi-objective optimization. Conclude with a live demo and community discussion, equipping you with valuable knowledge to advance your MLOps capabilities.
Syllabus
Introduction
KDP Overview
KDP Architecture
Why Algo Workflows
Memorization Cache
Template Spec
Example Workflow
Entry Point
MultiObjective Optimization
Implementation
Demo
Community
QA
Taught by
CNCF [Cloud Native Computing Foundation]
Related Courses
Getting Started with Argo CDPluralsight Argo CD Essential Guide for End Users with Practice
Udemy Argo Workflows on Kubernetes - Core Concepts
Udemy Build a Secure Developer Platform Using Argo, Istio and Vault
NDC Conferences via YouTube Cloud-Native Kubernetes Workflows on AKS with Argo
NDC Conferences via YouTube