YoVDO

Majorizing Measures, Codes, and Information

Offered By: Simons Institute via YouTube

Tags

Information Theory Courses Machine Learning Courses Trustworthy AI Courses

Course Description

Overview

Explore a thought-provoking lecture on the intersection of information theory and machine learning, delivered by Maxim Raginsky from the University of Illinois, Urbana-Champaign. Delve into the concept of majorizing measures and their applications in coding theory and information processing. Gain insights into how these principles contribute to the development of trustworthy machine learning systems. Discover the connections between mathematical abstractions and practical applications in the field of artificial intelligence during this 36-minute presentation from the Simons Institute's series on Information-Theoretic Methods for Trustworthy Machine Learning.

Syllabus

Majorizing Measures, Codes, and Information


Taught by

Simons Institute

Related Courses

Information Theory
The Chinese University of Hong Kong via Coursera
Fundamentals of Electrical Engineering
Rice University via Coursera
Computational Neuroscience
University of Washington via Coursera
Introduction to Complexity
Santa Fe Institute via Complexity Explorer
Tutorials for Complex Systems
Santa Fe Institute via Complexity Explorer