Machine Learning in Genomics - Fall 2019
Offered By: Massachusetts Institute of Technology via YouTube
Course Description
Overview
Syllabus
MIT CompBio Lecture 01 - Introduction (Fall'19).
MIT CompBio Lecture 02 - Dynamic Programming (Fall'19).
MIT CompBio Lecture 03 - Hashing BLAST Database Search (Fall'19).
MIT CompBio Lecture 04 - HMMs Hidden Markov Models I (Fall'19).
MIT CompBio Lecture 05 - HMMs Hidden Markov Models II (Fall'19).
MIT CompBio Lecture 06 - Expression Analysis Clustering Classification (Fall '19).
MIT CompBio Lecture 07 - RNA world, RNA-seq, RNA folding (Fall '19).
MIT CompBio Lecture 08 - Epigenomics I (Fall '19).
MIT CompBio Lecture 09 - Epigenomics II (Fall '19).
MIT CompBio Lecture 10 - Regulatory Genomics (Fall '19).
MIT CompBio Lecture 11 - Network inference and analysis (Fall '19).
MIT Compbio Lecture 12 - Deep Learning (Fall '19).
MIT Compbio Lecture 13 - Population Genetics (Fall 2019).
MIT CompBio Lecture 14 - GWAS (Fall 2019).
MIT CompBio Lecture 15 - eQTLs Mediation (Fall 2019).
MIT CompBio Lecture 16 - Systems Genetics (Fall 2019).
MIT CompBio Lecture 17 - Comparative Genomics (Fall 2019).
MIT CompBio Lecture 18 - Genome Evolution (Fall 2019).
MIT CompBio Lecture 19 - Phylogenetics (Fall 2019).
MIT CompBio Lecture 20 - Phylogenomics (Fall 2019).
MIT CompBio Lecture 21 - Single-cell genomics (Fall 2019).
MIT CompBio Lecture 22 - Cancer Genomics (Fall 2019).
MIT CompBio Lecture 23 - Multi-Phenotype analyses.
MIT CompBio Lecture 24 - Genome Engineering (Fall 2019).
MIT CompBio Lecture 25 - How to Present - Papers, Figures, Presentations.
MIT Compbio Lecture 11 1/2 - 6047 Buzzword Recitation (Fall '19).
Taught by
Manolis Kellis
Tags
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX